Identification

Title

Evaluation of regional isoprene emission factors and modeled fluxes in California

Abstract

Accurately modeled biogenic volatile organic compound (BVOC) emissions are an essential input to atmospheric chemistry simulations of ozone and particle formation. BVOC emission models rely on basal emission factor (BEF) distribution maps based on emission measurements and vegetation land-cover data but these critical input components of the models as well as model simulations lack validation by regional scale measurements. We directly assess isoprene emission-factor distribution databases for BVOC emission models by deriving BEFs from direct airborne eddy covariance (AEC) fluxes (Misztal et al., 2014) scaled to the surface and normalized by the activity factor of the Guenther et al. (2006) algorithm. The available airborne BEF data from approx. 10 000 km of flight tracks over California were averaged spatially over 48 defined ecological zones called ecoregions. Consistently, BEFs used by three different emission models were averaged over the same ecoregions for quantitative evaluation. Ecoregion-averaged BEFs from the most current land cover used by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v. 2.1 resulted in the best agreement among the tested land covers and agreed within 10% with BEFs inferred from measurement. However, the correlation was sensitive to a few discrepancies (either overestimation or underestimation) in those ecoregions where land-cover BEFs are less accurate or less representative for the flight track. The two other land covers demonstrated similar agreement (within 30% of measurements) for total average BEF across all tested ecoregions but there were a larger number of specific ecoregions that had poor agreement with the observations. Independently, we performed evaluation of the new California Air Resources Board (CARB) hybrid model by directly comparing its simulated isoprene area emissions averaged for the same flight times and flux footprints as actual measured area emissions. The model simulation and the observed surface area emissions agreed on average within 20 %. We show that the choice of model land-cover input data has the most critical influence on model-measurement agreement and the uncertainty in meteorology inputs has a lesser impact at scales relevant to regional air quality modeling.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sq9216

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-08-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:11:48.728950

Metadata language

eng; USA