Identification

Title

Update of upper level turbulence forecast by reducing unphysical components of topography in the numerical weather prediction model

Abstract

On 2 November 2015, unrealistically large areas of light-or-stronger turbulence were predicted by the WRF-RAP (Weather Research and Forecast Rapid Refresh)-based operational turbulence forecast system over the western U.S. mountainous regions, which were not supported by available observations. These areas are reduced by applying additional terrain averaging, which damps out the unphysical components of small-scale (similar to 2x) energy aloft induced by unfiltered topography in the initialization of the WRF model. First, a control simulation with the same design of the WRF-RAP model shows that the large-scale atmospheric conditions are well simulated but predict strong turbulence over the western mountainous region. Four experiments with different levels of additional terrain smoothing are applied in the initialization of the model integrations, which significantly reduce spurious mountain-wave-like features, leading to better turbulence forecasts more consistent with the observed data.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7b859sx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-07-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016. The Authors.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:07.665224

Metadata language

eng; USA