Identification

Title

Predicting the location of polar cusp in the Lyon-Fedder-Mobarry global magnetosphere simulation

Abstract

In this paper we compare observations of the high-latitude cusp from DMSP data to simulations conducted using the Lyon-Fedder-Mobarry (LFM) global magnetosphere simulation. The LFM simulation is run for the 31 August 2005 to 02 September 2005 moderate storm, from which the solar wind data exhibits a wide range of conditions that enable a statistical representation of the cusp to be obtained. The location of the cusp is identified using traditional magnetic depression and plasma density enhancement at high altitude. A new diagnostic using the parallel ion number flux is also tested for cusp identification. The correlation of the cusp latitude and various solar wind interplanetary magnetic field (IMF) coupling functions is explored using the three different cusp identification methods. The analysis shows (1) the three methods give approximately the same location and size of the simulated cusp at high altitude and (2) the variations of the simulated cusp are remarkably consistent with the observed statistical variations of the low-altitude cusp. In agreement with observations, a higher correlation is obtained using other solar wind coupling functions such as the Kan-Lee electric field. The magnetic local time (MLT) position of the simulated cusp is found to depend upon the IMF By component, with a lower linear correlation. The width of the simulated cusp in both latitude and MLT is also examined. The size of the cusp is found to increase with the solar wind dynamic pressure with saturation seen when the dynamic pressure is greater than 3 nPa.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71z45cm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:54:48.092348

Metadata language

eng; USA