Identification

Title

Improvements to the snow melting process in a partially double moment microphysics parameterization

Abstract

Polarimetric upgrades to the U.S. radar network have allowed new insight into the precipitation processes of tropical cyclones. Previous work by the authors compared the reflectivity at horizontal polarization and differential reflectivity observations from two hurricanes to simulated radar observations from the WRF model, and found that the aerosol-aware Thompson-Eidhammer microphysical scheme performed the best of several commonly used bulk microphysical parameterizations. Here we expand our investigation of the Thompson-Eidhammer scheme, and find that though it provided the most accurate forecast in terms of wind speed and simulated radar signatures, the scheme produces areas in which the differential reflectivity was much higher than observed. We conclude that the Thompson-Eidhammer scheme produces drop size distributions that have a larger median drop size than observed in regions of light stratiform precipitation. Examination of the vertical structure of simulated differential reflectivity indicates that the source of the discrepancy between the model and radar observations likely originates within the melting layer. The treatment of number production of rain drops from melting snow in the microphysical scheme is shown to be the ultimate source of the enhancement of differential reflectivity. A modification to the scheme is shown to result in better fidelity of the radar variables with the observations without degrading the short-term intensity forecast. Additional tests with an idealized squall line simulation are consistent with the hurricane results, suggesting the modification is generally applicable. The modifications to the Thompson-Eidhammer scheme shown here have been incorporated into updates of the WRF model starting with version 3.8.1.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7f47rmc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:48:35.466620

Metadata language

eng; USA