Identification

Title

Gleissberg cycle dependence of inner zone proton flux

Abstract

Inner zone proton flux from 1980 to mid-2021 is examined using NOAA POES satellite data, indicating a long-term increase corresponding to a one hundred year minimum in solar activity consistent with the Centennial Gleissberg Cycle. Variation of inner belt protons is correlated with decreasing F10.7 maxima over the 40-year period, serving as proxy for solar EUV input to Earth's atmosphere. Extending an earlier study (Qin et al., 2014; ) of >70 MeV protons from 1980 - 2021 using the South Atlantic Anomaly (SAA) peak flux, and at fixed L = 1.3, a comparison is made between the >35, >70 and >140 MeV energy channels on POES. All three energies show an increase in proton flux over the period 1998 - 2021 using a single spacecraft. The observed flux increase is correlated with decreasing F10.7 over the longer 40-year time interval, as with the similar to 11-year solar cycle. A phase lag during Solar Cycle 24 (January 2010 - June 2021) between the F10.7 minimum and proton flux maximum was determined to be similar to 500 days, the same at all energies studied. A model calculation of the inner zone proton flux is found to generally confirm the long-term trend examined both in absolute magnitude and phase lag. It is concluded that this long-term trend is a manifestation of the concurrent Gleissberg cycle minimum and accompanying decrease in solar EUV. Reduced EUV at solar maximum (F10.7 proxy) reduces proton loss to the atmosphere following solar maximum, thus explaining the long-term flux increase observed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pg1wgk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:18:08.674182

Metadata language

eng; USA