Identification

Title

New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning

Abstract

As societal dependence on transionospheric radio signals grows, space weather impact on these signals becomes increasingly important yet our understanding of the effects remains inadequate. This challenge is particularly acute at high latitudes where the effects of space weather are most direct and no reliable predictive capability exists. We take advantage of a large volume of data from Global Navigation Satellite Systems (GNSS) signals, increasingly sophisticated tools for data-driven discovery, and a machine learning algorithm known as the support vector machine (SVM) to develop a novel predictive model for high-latitude ionospheric phase scintillation. This work, to our knowledge, represents the first time an SVM model has been created to predict high-latitude phase scintillation. We use the true skill score to evaluate the SVM model and to establish a benchmark for high-latitude ionospheric phase scintillation prediction. The SVM model significantly outperforms persistence (i.e., current and future scintillation are identical), doubling the predictive skill according to the true skill score for a 1-hr lead time. For a 3-hr lead time, persistence is comparable to a random chance prediction, suggesting that the memory of the ionosphere in terms of high-latitude plasma irregularities is on the order of, or shorter than, a few hours. The SVM model predictive skill only slightly decreases between the 1- and 3-hr predictive tasks, pointing to the potential of this method. Our findings can serve as a foundation on which to evaluate future predictive models, a critical development toward the resolution of space weather impact on transionospheric radio signals.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sj1pk2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:09.327188

Metadata language

eng; USA