Identification

Title

Forward modeling of bending angles with a two‐dimensional operator for GNSS airborne radio occultations in atmospheric rivers

Abstract

The Global Navigation Satellite System (GNSS) airborne radio occultation (ARO) technique is used to retrieve profiles of the atmosphere during reconnaissance missions for atmospheric rivers (ARs) on the west coast of the United States. The measurements of refractive bending angle integrate the effects of variations in refractive index over long near‐horizontal ray‐paths from a spaceborne transmitter to a receiver onboard an aircraft. A forward operator is required to assimilate ARO observations, which are sensitive to pressure, temperature, and humidity, into numerical weather prediction models to support forecasting of ARs. A two‐dimensional (2D) bending angle operator is proposed to enable capturing key atmospheric features associated with strong ARs. Comparison to a one‐dimensional (1D) forward model supports the evidence of large bending angle departures within 3–7 km impact heights for observations collected in a region characterized by the integrated water vapor transport (IVT) magnitude above 500 kg . The assessment of the 2D forward model for ARO retrievals is based on a sequence of six flights leading up to a significant AR precipitation event in January 2021. Since the observations often sample regions outside the AR where moisture is low, the significance of horizontal variations is obscured in the average bending angle statistics. Examples from individual flights sampling the cross‐section of an AR support the need for the 2D forward model. Additional simulation experiments are performed to quantify forward modeling errors due to tangent point drift and horizontal gradients suggesting contributions on the order of 5% and 20%, respectively.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7kh0srz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:37.176512

Metadata language

eng; USA