Identification

Title

A computationally efficient method for updating fuel inputs for wildfire behavior models using sentinel imagery and random forest classification

Abstract

Disturbance events can happen at a temporal scale much faster than wildland fire fuel data updates. When used as input for wildland fire behavior models, outdated fuel datasets can contribute to misleading forecasts, which have implications for operational firefighting, mitigation, and wildland fire research. Remote sensing and machine learning methods can provide a solution for on-demand fuel estimation. Here, we show a proof of concept using C-band synthetic aperture radar and multispectral imagery, land cover classes, and tree mortality surveys to train a random forest classifier to estimate wildland fire fuel data in the East Troublesome Fire (Colorado) domain. The algorithm classified over 80% of the test dataset correctly, and the resulting wildland fire fuel data was used to simulate the East Troublesome Fire using the coupled atmosphere-wildland fire behavior model, WRF-Fire. The simulation using the modified fuel inputs, where 43% of original fuels are replaced with fuels representing dead trees, improved the burn area forecast by 38%. This study demonstrates the need for up-to-date fuel maps available in real time to provide accurate prediction of wildland fire spread, and outlines the methodology based on high-resolution satellite observations and machine learning that can accomplish this task.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72v2kr1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:05:38.051539

Metadata language

eng; USA