Identification

Title

Exploring the decision-making process in model development: Focus on the Arctic snowpack

Abstract

The Arctic poses many challenges for Earth system and snow physics models, which are commonly unable to simulate crucial Arctic snowpack processes,such as vapour gradients and rain-on-snow-induced ice layers. These limitations raise concerns about the current understanding of Arctic warming and its impact on biodiversity, livelihoods, permafrost, and the global carbon budget. Recognizing that models are shaped by human choices, 18 Arctic researchers were interviewed to delve into the decision-making process behind model construction. Although data availability, issues of scale, internal model consistency, and historical and numerical model legacies were cited as obstacles to developing an Arctic snowpack model, no opinion was unanimous. Divergences were not merely scientific disagreements about the Arctic snowpack but reflected the broader research context. Inadequate and insufficient resources, partly driven by short-term priorities dominating research landscapes, impeded progress. Nevertheless, modellers were found to be both adaptable to shifting strategic research priorities – an adaptability demonstrated by the fact that interdisciplinary collaborations were the key motivation for model development – and anchored in the past. This anchoring and non-epistemic values led to diverging opinions about whether existing models were “good enough” and whether investing time and effort to build a new model was a useful strategy when addressing pressing research challenges. Moving forward, we recommend that both stakeholders and modellers be involved in future snow model intercomparison projects in order to drive developments that address snow model limitations currently impeding progress in various disciplines. We also argue for more transparency about the contextual factors that shape research decisions. Otherwise, the reality of our scientific process will remain hidden, limiting the changes necessary to our research practice.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7hq446w

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:58.485625

Metadata language

eng; USA