Identification

Title

Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase

Abstract

We have investigated the thermospheric and ionospheric response to the 14-15 December 2006 geomagnetic storm using a Coupled Magnetosphere Ionosphere Thermosphere (CMIT) 2.0 model simulation. In this paper we focus on observations and simulations during the initial phase of the storm (about 8 h), when the shock was driving changes in geospace. The global ionospheric maps of total electron content (TEC), ionosonde data at four stations and Millstone Hill incoherent scatter radar (ISR) observations are compared with the corresponding simulation results from the CMIT model. The observations showed significant positive storm effects occurred in the Atlantic sector after the onset of this storm. The CMIT model is able to capture the temporal and spatial variations of the ionospheric storm effects seen in the GPS TEC observations, although the model slightly underestimates the daytime positive ionospheric storm in the South American sector. The simulations are also in agreement with the ionosonde and ISR ionospheric measurements. Term analysis of the ion continuity equation demonstrates that changes in the electric fields play a dominant role in generating the observed ionospheric positive storm effect in the American sector during the initial phase, although neutral winds and composition changes also contribute. The difference in the strength of the enhancements over North and South America can be explained by the slope of the topside electron density profiles in the two hemispheres. In the southern hemisphere electron densities decrease slowly with altitude, whereas the decrease is much more rapid in the northern (winter) hemisphere. The electric fields, therefore, cannot cause large increases in electron density by uplifting the plasma, so positive storm effects are small in the southern hemisphere compared with the northern hemisphere, even though the increase in hm F₂ is greater in the southern hemisphere. Nighttime changes in electron density in other longitude sectors are small, because the topside electron densities also decrease slowly with altitude at night.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79p31t4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-01-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:59:58.609633

Metadata language

eng; USA