Estimating atmospheric boundary layer depth using COSMIC radio occultation data
This study presents an algorithm for estimating atmospheric boundary layer (ABL) depth from Global Positioning System (GPS) radio occultation (RO) data. The algorithm is applied to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO data and validated using high-resolution radiosonde data from the island of St. Helena (16.0°S, 5.7°W), tropical (30°S–30°N) radiosondes collocated with RO, and European Centre for Medium-Range Weather Forecasts (ECMWF) high-resolution global analyses. Spatial and temporal variations of the ABL depth obtained from COSMIC RO data for a 1-yr period over tropical and subtropical oceans are analyzed. The results demonstrate the capability of RO data to resolve geographical and seasonal variations of ABL height. The spatial patterns of the variations are consistent with those derived from ECMWF global analysis. However, the ABL heights derived from ECMWF global analysis, on average, are negatively biased against those estimated from COSMIC GPS RO data. These results indicate that GPS RO data can provide useful information on ABL height, which is an important parameter for weather and climate studies.
document
http://n2t.net/ark:/85065/d7mg7qv3
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-08-01T00:00:00Z
Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:06:34.823142