Identification

Title

An intercomparison of wall fluxes in a turbulent thermal convection chamber: Direct numerical simulations and wall-modeled large-eddy simulations enhanced by machine learning

Abstract

Thermal convection in a closed chamber is driven by a warm bottom, a cold top, and side walls at various temperatures. Although wall fluxes are the source of convection energy, accurately modeling these fluxes (i.e., the wall model) is challenging. In large-eddy simulations (LESs), many wall models are traditionally derived from the canonical boundary layer, which may be unsuitable for thermal convection bounded by both horizontal and vertical walls. This study conducts a model intercomparison of dry convection in a cubic-meter chamber using three direct numerical simulations (DNSs) and four LESs with different wall models. The LESs employ traditional wall models, a new wall model employing physics-aware neural networks, and a refined grid near the walls. The experiment involves four cases with varying sidewall temperatures. Our results show that LESs capture the main flow features and the trends of mean fluxes. The physics-aware neural networks and refined wall grids can improve the temporally averaged local fluxes when the large-scale circulation has a preferred direction. Even without the local improvement of wall fluxes, the LES flow quantities (temperature and velocities) can still largely match those in DNSs, provided the mean flux largely matches the DNSs. Additionally, DNSs reveal that a variation in corner treatments has minimal impacts on the flow quantities away from corners. Finally, LESs underestimate the mean fluxes of the entire wall due to their inability to resolve corner regions, but their mean flux away from the corner can better match DNS.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7445rwd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:35.026661

Metadata language

eng; USA