Identification

Title

Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM

Abstract

Average F2-layer electron densities at December solstice are higher than those at June solstice. This phenomenon, which is often called the F2-layer annual asymmetry, has been observed for several decades, but its causes are still not fully understood. This study investigates global variations of this annual asymmetry observed from one year of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation (IRO) measurements. The IRO observations show that there is a strong NmF2 annual asymmetry that has significant longitudinal and local time variations. A strong peak of the asymmetry occurs at about noon and another one at midnight, both located at around 25° geomagnetic latitude. Numerical simulations using the Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) are in very good agreement with these observations. The modeled NmF2 annual asymmetry has a similar magnitude, and similar semidiurnal and longitudinal variations as those in the observations. TIEGCM simulations show that changes in solar extreme ultraviolet (EUV) radiation between the December and June solstices and the displacement of the geomagnetic axis from the geographic axis are the two primary processes that cause the annual asymmetry and its associated longitudinal and local time variations. The tides propagating from lower altitudes also contribute to this asymmetry, but to a smaller extent.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dz09kv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-07-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:04:31.909359

Metadata language

eng; USA