Identification

Title

The direct radiative effect of CO2 increase on summer precipitation in North America

Abstract

Precipitation changes in full response to CO2 increase are widely studied but confidence in future projections remains low. Mechanistic understanding of the direct radiative effect of CO2 on precipitation changes, independent from CO2-induced SST changes, is therefore necessary. Utilizing global atmospheric models, we identify robust summer precipitation decreases across North America in response to direct CO2 forcing. We find that spatial distribution of CO2 forcing at land surface is likely shaped by climatological distribution of water vapor and clouds. This, coupled with local feedback processes, changes in convection, and moisture supply resulting from CO2-induced circulation changes, could determine North American hydroclimate changes. In central North America, increasing CO2 may decrease summertime precipitation by warming the surface and inducing dry advection into the region to reduce moisture supply. Meanwhile, for the southwest and the east, CO2-induced shift of subtropical highs generates wet advection, which might mitigate the drying effect from warming. Plain Language Summary How precipitation changes in full response to increased CO2 remains unclear. Mechanistic understanding of how increasing CO2 alone changes precipitation can help us better predict future precipitation in full response to CO2 increase. We find that the precipitation responses are much stronger during summer than winter in North America. During summer, precipitation significantly decreases in central North America in response to the direct CO2 radiative effect, while in the southwest and the east, precipitation changes are small. There might be stronger longwave radiation forcing near the surface induced by CO2 increase in arid regions due to weaker masking effect of water vapor and clouds. This, along with local feedbacks, significantly warms the central region. Meanwhile, the direct forcing of CO2 induces northward shifts in subtropical highs, consequently generating anticyclonic anomalies. These wind anomalies result in drier air advected into central North America, leading to moisture divergence and hence reducing moisture supply. The reduced water supply, coupled with the warming, may decrease precipitation in the region. For the southwest and the east, the anticyclonic anomalies cause wetter air advected into the regions and generate moisture convergence, which increases moisture supply and might mitigate the drying effect caused by CO2-induced warming.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7r215m5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:10.373034

Metadata language

eng; USA