Global effects of a polar solar eclipse on the coupled magnetosphere-ionosphere system
It is well-known that solar eclipses can significantly impact the ionosphere and thermosphere, but how an eclipse influences the magnetosphere-ionosphere system is still unknown. Using a coupled magnetosphere-ionosphere-thermosphere model, we examined the impact on geospace of the northern polar-region eclipse that occurred on June 10, 2021. The simulations reveal that the eclipse-induced reduction in polar ionospheric conductivity causes large changes in field-aligned current, cross-polar cap potential and auroral activity. While such effects are expected in the northern hemisphere where solar obscuration occurred, they also occurred in the southern hemisphere through electrodynamic coupling. Eclipse-induced changes in monoenergetic auroral precipitation differ significantly between the northern hemisphere and southern hemisphere while diffuse auroral precipitation is interhemispherically symmetric. This study demonstrates that the geospace response to a polar-region solar eclipse is not limited just to the eclipse region but has global implications.
document
https://n2t.org/ark:/85065/d7f1938r
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-12-16T00:00:00Z
Copyright 2021 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T16:08:46.418326