Identification

Title

Information length as a useful index to understand variability in the global circulation

Abstract

With improved measurement and modelling technology, variability has emerged as an essential feature in non-equilibrium processes. While traditionally, mean values and variance have been heavily used, they are not appropriate in describing extreme events where a significant deviation from mean values often occurs. Furthermore, stationary Probability Density Functions (PDFs) miss crucial information about the dynamics associated with variability. It is thus critical to go beyond a traditional approach and deal with time-dependent PDFs. Here, we consider atmospheric data from the Whole Atmosphere Community Climate Model (WACCM) and calculate time-dependent PDFs and the information length from these PDFs, which is the total number of statistically different states that a system evolves through in time. Specifically, we consider the three cases of sampling data to investigate the distribution of information (information budget) along the altitude and longitude to gain a new perspective of understanding variabilities, correlation among different variables and regions. Time-dependent PDFs are shown to be non-Gaussian in general; the information length tends to increase with the altitude albeit in a complex form; this tendency is more robust for flows/shears than temperature. Much similarity among flows and shears in the information length is also found in comparison with the temperature. This means a strong correlation among flows/shears because of their coupling through gravity waves in this particular WACCM model. We also find the increase of the information length with the latitude and interesting hemispheric asymmetry for flows/shears/temperature, with the tendency of anti-correlation (correlation) between flows/shears and temperature at high (low) latitude. These results suggest the importance of high latitude/altitude in the information budget in the Earth's atmosphere, the spatial gradient of the information length being a useful proxy for information flow.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7b85c9g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-02-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:35:01.877660

Metadata language

eng; USA