Identification

Title

Investigating 2D modeling of atmospheric convection in the PBL

Abstract

The performance of a two-dimensional (2D) numerical model in representing three-dimensional (3D) planetary boundary layer (PBL) convection is investigated by comparing the 2D model solution to that of a 3D large- eddy simulation. The free convective PBL has no external forcing that would lead to any realizable 2D motion, and hence the 2D model represents a parameterization (not a simulation) of such a convective system. The present solutions show that the fluxes of conserved scalars, such as the potential temperature, are somewhat constrained and hence are not very sensitive to the model dimensionality. Turbulent kinetic energy (TKE), surface friction velocity, and velocity variances are sensitive to the subgrid-scale eddy viscosity and thermal diffusivity in the 2D model; these statistics result mostly from model-generated hypothetical 2D plumes that can be tuned to behave similarly to their 3D counterparts. These 2D plumes are comparable in scale with the PBL height due to the capping inversion. In the presence of shear, orienting the 2D model perpendicular to the mean shear is essential to generate a reasonable momentum flux profile, and hence mean wind profile and wind- related statistics such as the TKE and velocity variances.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7m045vh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2004-04-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2004 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:08:30.262009

Metadata language

eng; USA