Identification

Title

Impacts of climate change and emissions on atmospheric oxidized nitrogen deposition over East Asia

Abstract

A multi-model ensemble of Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations is used to study the atmospheric oxidized nitrogen (NOy) deposition over East Asia under climate and emission changes projected for the future. Both dry and wet NOy deposition show significant decreases in the 2100s under RCP4.5 and RCP8.5, primarily due to large anthropogenic emission reduction over both land and sea. However, in the near future of the 2030s, both dry and wet NOy deposition increase significantly due to continued increase in emissions. Marine primary production from both dry and wet NOy deposition increases by 19 %-34% in the 2030s and decreases by 34 %-63% in the 2100s over the East China Sea. The individual effect of climate or emission changes on dry and wet NOy deposition is also investigated. The impact of climate change on dry NOy deposition is relatively minor, but the effect on wet deposition, primarily caused by changes in precipitation, is much higher. For example, over the East China Sea, wet NOy deposition increases significantly in summer due to climate change by the end of this century under RCP8.5, which may subsequently enhance marine primary production. Over the coastal seas of China, as the transport of NOy from land becomes weaker due to the decrease in anthropogenic emissions, the effect of ship emissions and lightning emissions becomes more important. On average, the seasonal mean contribution of ship emissions to total NOy deposition is projected to be enhanced by 24 %-48% and 3 %-37% over the Yellow Sea and East China Sea, respectively, by the end of this century. Therefore, continued control of both anthropogenic emissions over land and ship emissions may reduce NOy deposition to the Chinese coastal seas.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sf306k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-01-23T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:07.157668

Metadata language

eng; USA