Identification

Title

The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the Mesoscale Predictability Experiment

Abstract

This study tests the hypothesis that assimilating mid-to upper-tropospheric, meso-a-to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill over the set of cases considered by the 2013 Mesoscale Predictability Experiment (MPEX) because of a limited influence upon the lower-tropospheric phenomena that modulate CI occurrence, timing, and location. The ensemble Kalman filter implementation within the Data Assimilation Research Testbed as coupled to the Advanced Research Weather Research and Forecasting (WRF) Model is used to initialize two nearly identical 30-member ensembles of short-range forecasts for each case: one initial condition set that incorporates MPEX dropsonde observations and one that excludes these observations. All forecasts for a given mission begin at 1500 UTC and are integrated for 15 h on a convection-permitting grid encompassing much of the conterminous United States. Forecast verification is conducted probabilistically using fractions skill score and deterministically using a 2 x 2 contingency table approach at multiple neighborhood sizes and spatiotemporal event-matching thresholds to assess forecast skill and support hypothesis testing. The probabilistic verification represents the first of its kind for numerical CI forecasts. Forecasts without MPEX observations have high fractions skill score and probabilities of detection on the meso-a scale but exhibit a considerable high bias for forecast CI event count. Assimilating MPEX observations has a negligible impact upon forecast skill for the cases considered, independent of verification metric, as the MPEX observations result in only subtle differences primarily manifest in the position and intensity of atmospheric features responsible for focusing and/or triggering deep, moist convection.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fb55n3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:22:48.972402

Metadata language

eng; USA