Identification

Title

Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of Atmospheric Tomography Mission (ATom) aircraft observations

Abstract

Formaldehyde (HCHO) in the atmosphere is an intermediate product from the oxidation of methane and non-methane volatile organic compounds. In remote marine regions, HCHO variability is closely related to atmospheric oxidation capacity, and modeled HCHO in these regions is usually added as a global satellite HCHO background. Thus, it is important to understand and validate the levels of satellite HCHO over the remote oceans. Here we intercompare three satellite retrievals of total HCHO columns from the Ozone Monitoring Instrument Smithsonian Astrophysical Observatory (OMI SAO (v004)) algorithm, Ozone Mapping and Profiler Suite on Suomi National Polar-orbiting Partnership Smithsonian Astrophysical Observatory (OMPS-NPP SAO) algorithm, and Ozone Monitoring Instrument Belgian Institute for Space Aeronomy (OMI BIRA) algorithm and validate them against in situ observations from the NASA Atmospheric Tomography Mission (ATom) mission. All retrievals are correlated with ATom-integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. This is also reflected in the mean bias (MB) for OMI SAO (−0.73 ± 0.87) × 1015 molec. cm−2, OMPS SAO (−0.76 ± 0.88) × 1015 molec. cm−2, and OMI BIRA (−1.40 ± 1.11) × 1015 molec. cm−2. We recommend the OMI-SAO (v004) retrieval for remote-ocean atmosphere studies. Three satellite HCHO retrievals and in situ ATom columns all generally captured the spatial and seasonal distributions of HCHO in the remote-ocean atmosphere. Retrieval bias varies by latitude and season, but a persistent low bias is found in all products at high latitudes, and the general low bias is most severe for the OMI BIRA product. Examination of retrieval components reveals that slant column corrections have a larger impact on the retrievals over remote marine regions, while AMFs play a smaller role. This study informs us that the potential latitude-dependent biases in the retrievals require further investigation for improvement and should be considered when using marine HCHO satellite data, and vertical profiles from in situ instruments are crucial for validating satellite retrievals.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7w66r30

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-03T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:08.169036

Metadata language

eng; USA