Identification

Title

The CU Airborne Solar Occultation Flux instrument: Performance evaluation during BB-FLUX

Abstract

Biomass burning is an important and increasing source of trace gases and aerosols relevant to air quality and climate. The Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign deployed the University of Colorado Airborne Solar Occultation Flux (CU AirSOF) instrument aboard the University of Wyoming King Air research aircraft during the 2018 Pacific Northwest wildfire season (July- September). CU AirSOF tracks the sun even through thick smoke plumes using short-wave infrared wavelengths to minimize scattering from smoke partides, and uses Fourier transform infrared spectroscopy (FTS) to measure the column absorption of multiple trace gases at mid-infrared wavelengths. The instrument is described, characterized, and evaluated using colocated ground-based remote sensing and airborne in situ data sets. Vertical column density (VCD) measurements agree well with a colocated stationary high-resolution FTS for carbon monoxide (CO, slope within 2%), formaldehyde (HCHO, 3%), formic acid (HCOOH, 18%), ethane (C2H6, 4%), ammonia (NH3, 4%), hydrogen cyanide (HCN, 10%), and peroxyacyl nitrate (PAN(FTs), 1%; we distinguish the molecule PAN from PAN(FTs), which includes similar molecules and is measured as a sum by FTS). Airborne VCD measurements are compared with in situ measurements aboard the NSF/NCAR C-130 aircraft during a coordinated mission to the Rabbit Foot Fire near Boise, Idaho by digesting VCDs into normalized excess column ratios (NEMRs). Column NEMRs from CU AirSOF, expressed as VCD enhancements over background and normalized to CO enhancements, are found to agree with the in situ NEMRs within 20% for HCHO, methanol (CH3OH), ethylene (C2H4 ), C2H6, NH3, and HCN and within 30-66% for HCOOH and PAN. CU AirSOF integrates over plume heterogeneity, is inherently calibrated, and provides an innovative, flexible, and quantitative tool to measure emission mass fluxes from wildfires.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h70kf2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:08.523976

Metadata language

eng; USA