Identification

Title

Observational evidence of horizontal transport‐driven dehydration in the TTL

Abstract

A recent airborne study obtained extensive measurements in the tropical tropopause layer (TTL) over the western Pacific and provided the first opportunity to examine the relationship between water vapor and temperature in the coldest region and season of the TTL using high‐resolution in situ data. Analysis of this data set verifies key hypotheses in Lagrangian simulations of TTL transport and freeze drying. Furthermore, the observations provide a number of new insights into the transport process: In the layer below the lapse rate tropopause, vertical transport from upward motion dominates the relative humidity structure; final dehydration, dominated by large‐scale horizontal advection, occurs in the layer transacting the cold point tropopause that is often above the lapse rate tropopause, resulting in water vapor mixing ratios with corresponding frost points consistent with the coldest temperatures of the region, lower than the temperatures of the local cold points.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75d8w0m

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:11.368643

Metadata language

eng; USA