Identification

Title

The influence of shear on deep convection initiation. Part II: simulations

Abstract

This study evaluates a hypothesis for the role of vertical wind shear in deep convection initiation (DCI) that was introduced in Part I by examining behavior of a series of numerical simulations. The hypothesis states, "Initial moist updrafts that exceed a width and shear threshold will 'root' within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state." A theoretical model that embodied key elements of the hypothesis was developed in Part I, and the behavior of this model was explored within a multidimensional environmental parameter space. Remarkably similar behavior is evident in the simulations studied here to that of the theoretical model, both in terms of the temporal evolution of DCI and in the sensitivity of DCI to environmental parameters. Notably, both the simulations and theoretical model experience a bifurcation in outcomes, whereby nascent clouds that are narrower than a given initial radius R-0 threshold quickly decay and those above the R-0 threshold undergo DCI. An important assumption in the theoretical model, which states that the cloud-relative flow of the background environment V-CR determines cloud radius R, is scrutinized in the simulations. It is shown that storm-induced inflow is small relative to V-CR beyond a few kilometers from the updraft edge, and V-CR therefore plays a predominant role in transporting conditionally unstable air to the updraft. Thus, the critical role of V-CR in determining R is validated.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71n84vw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:03.039849

Metadata language

eng; USA