Identification

Title

Examining landscape-scale fuel and terrain controls of wildfire spread rates using repetitive Airborne Thermal Infrared (ATIR) imagery

Abstract

The objectives of this study are to evaluate landscape-scale fuel and terrain controls on fire rate of spread (ROS) estimates derived from repetitive airborne thermal infrared (ATIR) imagery sequences collected during the 2017 Thomas and Detwiler extreme wildfire events in California. Environmental covariate data were derived from prefire National Agriculture Imagery Program (NAIP) orthoimagery and USGS digital elevation models (DEMs). Active fronts and spread vectors of the expanding fires were delineated from ATIR imagery. Then, statistical relationships between fire spread rates and landscape covariates were analyzed using bivariate and multivariate regression. Directional slope is found to be the most statistically significant covariate with ROS for the five fire imagery sequences that were analyzed and its relationship with ROS is best characterized as an exponential growth function (adj. R-2 max = 0.548, min = 0.075). Imaged-derived fuel covariates alone are statistically weak predictors of ROS (adj. R-2 max = 0.363, min = 0.002) but, when included in multivariate models, increased ROS predictability and variance explanation (+14%) compared to models with directional slope alone.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d74b34pk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-03T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:09:49.286002

Metadata language

eng; USA