Identification

Title

Biophysical consequences of photosynthetic temperature acclimation for climate

Abstract

Photosynthetic temperature acclimation is a commonly observed process that is increasingly being incorporated into Earth System Models (ESMs). While short-term acclimation has been shown to increase carbon storage in the future, it is uncertain whether acclimation will directly influence simulated future climate through biophysical mechanisms. Here, we used coupled atmosphere-biosphere simulations using the Community Earth System Model (CESM) to assess how acclimation-induced changes in photosynthesis influence global climate under present-day and future (RCP 8.5) conditions. We ran four 30 year simulations that differed only in sea surface temperatures and atmospheric CO2 (present or future) and whether a mechanism for photosynthetic temperature acclimation was included (yes or no). Acclimation increased future photosynthesis and, consequently, the proportion of energy returned to the atmosphere as latent heat, resulting in reduced surface air temperatures in areas and seasons where acclimation caused the biggest increase in photosynthesis. However, this was partially offset by temperature increases elsewhere, resulting in a small, but significant, global cooling of 0.05 degrees C in the future, similar to that expected from acclimation-induced increases in future land carbon storage found in previous studies. In the present-day simulations, the photosynthetic response was not as strong and cooling in highly vegetated regions was less than warming elsewhere, leading to a net global increase in temperatures of 0.04 degrees C. Precipitation responses were variable and rates did not change globally in either time period. These results, combined with carbon-cycle effects, suggest that models without acclimation may be overestimating positive feedbacks between climate and the land surface in the future.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7js9s73

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:50:53.294848

Metadata language

eng; USA