Identification

Title

The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model version 5 (CAM5)

Abstract

Current climate models generally underpredict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an "off-line mode" in which the large-scale circulation features are prescribed. We compare the simulated BC transport when the off-line model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over northeast Asia and eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resemble those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport are unlikely the most important cause of the large underprediction of surface BC concentration in the Arctic.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sj1mjs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-05-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:27:39.651665

Metadata language

eng; USA