Identification

Title

Generation of turbulence through frontogenesis in sheared stratified flows

Abstract

The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or von Karman swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings are used, up to 2048(2) x 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales of shear and stratification. Published by AIP Publishing.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j1060x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Institute of Physics.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:09.147272

Metadata language

eng; USA