Effects of white roofs on urban temperature in a global climate model
Increasing the albedo of urban surfaces has received attention as a strategy to mitigate urban heat islands. Here, the effects of globally installing white roofs are assessed using an urban canyon model coupled to a global climate model. Averaged over all urban areas, the annual mean heat island decreased by 33%. Urban daily maximum temperature decreased by 0.6°C and daily minimum temperature by 0.3°C. Spatial variability in the heat island response is caused by changes in absorbed solar radiation and specification of roof thermal admittance. At high latitudes in winter, the increase in roof albedo is less effective at reducing the heat island due to low incoming solar radiation, the high albedo of snow intercepted by roofs, and an increase in space heating that compensates for reduced solar heating. Global space heating increased more than air conditioning decreased, suggesting that end-use energy costs must be considered in evaluating the benefits of white roofs.
document
http://n2t.net/ark:/85065/d7pr7x8b
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-02-03T00:00:00Z
An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:59:06.577591