Identification

Title

Assimilation of global positioning system radio occultation observations into NCEP's Global Data Assimilation System

Abstract

The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched six small satellites in April 2006, each carrying a GPS radio occultation (RO) receiver. At final orbit, COSMIC will provide 2500–3000 RO soundings per day uniformly distributed around the globe in near–real time. In preparation for the assimilation of COSMIC data in an operational framework, the NCEP/Environmental Modeling Center (EMC) has successfully developed the capability of assimilating profiles of refractivity and bending angle. Each forward operator has been implemented with its own quality control and error characterization. In this paper, the infrastructure developed at NCEP/EMC to assimilate GPS RO observations, including forward models, observational and representativeness errors, and quality control procedures, is described. The advantages of using a forward operator for bending angle versus refractivity are discussed and some preliminary results on the benefits of the GPS RO in weather analysis and forecasts are presented. The different strategies adopted at NCEP/EMC to assimilate GPS RO data are aimed to select the most appropriate forward operator in the operational data assimilation system when COSMIC products are stable and routinely available to the Numerical Weather Centers. In the meantime, data from the Challenging Minisatellite Payload (CHAMP) satellite is available in non–real time and has been used in the assimilation tests to examine the potential benefits of the GPS RO–derived products. In the preliminary results presented in this study, the use of GPS RO observations slightly improves anomaly correlation scores for temperature (by 0.01–0.03) in the Southern Hemisphere and Tropics throughout the depth of the atmosphere while a slight degradation is found in the upper troposphere and stratosphere in the Northern Hemisphere. However, significant reduction of the temperature and humidity biases is found for all latitudes. The benefits from assimilating GPS RO data also extend to other fields, such as 500-hPa geopotential heights and tropical winds, demonstrating the potential use of GPS RO data in operational forecasting.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kd1z2d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:38:39.345628

Metadata language

eng; USA