Identification

Title

Taking the pulse of the planet

Abstract

Humans have released carbon dioxide and other greenhouse gases in sufficient quantity to change the composition of the atmosphere (Figure 1). The result is an accumulation of heat in Earth’s system, commonly referred to as global warming. Earth’s climate has responded to this influx of heat through higher temperatures in the atmosphere, land, and ocean. This warming, in turn, has melted ice, raised sea levels, and increased the frequency of extreme weather events: heat waves and heavy rains, for example. The results of these weather events include wildfires and flooding, among other things [Intergovernmental Panel on Climate Change, 2013]. Decision-makers, scientists, and the general public are faced with critical questions: How fast is Earth’s system accumulating heat, and how much will it warm in the future as human activities continue to emit greenhouse gases? Here we explore better ways of measuring global warming to answer these questions. Natural temperature variability is much more muted in the ocean than in the atmosphere, owing to the ocean’s greater ability to absorb heat (its heat capacity). As a result, ocean heating and sea level rise, which are measured independently, show stronger evidence that the planet is warming than does global average surface temperature, which relies on air temperature measurements. In other words, these ocean measurements could provide vital signs for the health of the planet. Thus, we suggest that scientists and modelers who seek global warming signals should track how much heat the ocean is storing at any given time, termed global ocean heat content (OHC), as well as sea level rise (SLR). Similar to SLR, OHC has a very high signal-to-noise ratio; that is, it clearly shows the effects of climate change distinct from natural variability.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tb19gd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:17:05.327648

Metadata language

eng; USA