Identification

Title

Comparison of eulerian bin and lagrangian particle-based microphysics in simulations of nonprecipitating cumulus

Abstract

A single nonprecipitating cumulus congestus setup is applied to compare droplet spectra grown by the diffusion of water vapor in Eulerian bin and particle-based Lagrangian microphysics schemes. Bin microphysics represent droplet spectral evolution applying the spectral density function. In the Lagrangian microphysics, computational particles referred to as superdroplets are followed in time and space with each superdroplet representing a multiplicity of natural cloud droplets. The same cloud condensation nuclei (CCN) activation and identical representation of the droplet diffusional growth allow the comparison. The piggybacking method is used with the two schemes operating in a single simulation, one scheme driving the dynamics and the other one piggybacking the simulated flow. Piggybacking allows point-by-point comparison of droplet spectra predicted by the two schemes. The results show the impact of inherent limitations of the two microphysics simulation methods, numerical diffusion in the Eulerian scheme and a limited number of superdroplets in the Lagrangian scheme. Numerical diffusion in the Eulerian scheme results in a more dilution of the cloud upper half and thus smaller cloud droplet mean radius. The Lagrangian scheme typically has larger spatial fluctuations of droplet spectral properties. A significantly larger mean spectral width in the bin microphysics across the entire cloud depth is the largest difference between the two schemes. A fourfold increase of the number of superdroplets per grid volume and a twofold increase of the spectral resolution and thus the number of bins have small impact on the results and provide only minor changes to the comparison between simulated cloud properties.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tq64wd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:04.599158

Metadata language

eng; USA