Identification

Title

GPU parallelization of a hybrid pseudospectral geophysical turbulence framework using CUDA

Abstract

An existing hybrid MPI-OpenMP scheme is augmented with a CUDA-based fine grain parallelization approach for multidimensional distributed Fourier transforms, in a well-characterized pseudospectral fluid turbulence code. Basics of the hybrid scheme are reviewed, and heuristics provided to show a potential benefit of the CUDA implementation. The method draws heavily on the CUDA runtime library to handle memory management and on the cuFFT library for computing local FFTs. The manner in which the interfaces to these libraries are constructed, and ISO bindings utilized to facilitate platform portability, are discussed. CUDA streams are implemented to overlap data transfer with cuFFT computation. Testing with a baseline solver demonstrated significant aggregate speed-up over the hybrid MPI-OpenMP solver by offloading to GPUs on an NVLink-based test system. While the batch streamed approach provided little benefit with NVLink, we saw a performance gain of 30% when tuned for the optimal number of streams on a PCIe-based system. It was found that strong GPU scaling is nearly ideal, in all cases. Profiling of the CUDA kernels shows that the transform computation achieves 15% of the attainable peak FlOp-rate based on a roofline model for the system. In addition to speed-up measurements for the fiducial solver, we also considered several other solvers with different numbers of transform operations and found that aggregate speed-ups are nearly constant for all solvers.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pk0kbq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-02-08T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:21:44.008723

Metadata language

eng; USA