Identification

Title

Riverine nitrogen flux and its response to management, climate, and other environmental factors in Northeast and Midwest United States

Abstract

The rate and extent of anthropogenic alteration of the global nitrogen cycle over the past four decades has been extensive, resulting in cascading negative impacts on riverine and coastal water quality. In this paper, we investigate the individual effects of a set of management, technology, and policy mechanisms that alter total reactive nitrogen (TN) flux through rivers, using a modified, spatially detailed SPARROW TN model, between 1980 and 2019 in the Northeast (NE) and Midwest (MW) of the United States. Using the recalibrated model, we simulate and validate a historical baseline, to which we compare a set of climate and non-climate single factor experiments (SFEs) in which individual factors are held at 1980s levels while all other factors change dynamically. We evaluate SFE performance in terms of differences in TN flux and willingness to pay. The largest effect on TN flux are related to reduction in cropland area and atmospheric nitrogen deposition. Multi-factor experiments (MFEs) suggest that increasingly efficient corn cultivars had a larger influence than increasing fertilizer application rate, while population growth has a larger influence than wastewater treatment. Extreme climate SFEs suggest that persistent wet conditions increase TN flux throughout the study region. Meanwhile, persistent hot years result in reduced TN flux. The persistent dry climate SFE leads to increased TN flux in the NE and reduced TN flux in the MW. We find that the potential for TN removal through aquatic decay is greatest in MW, due to the role of long travel time of rivers draining into the Lower Mississippi River. This paper sheds light on how a geographically and climatologically diverse region would respond to a representative selection of management options.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7js9vd5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-05-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:27:39.156469

Metadata language

eng; USA