Identification

Title

Modeling of cloud microphysics: Can we do better?

Abstract

Representation of cloud microphysics is a key aspect of simulating clouds. From the early days of cloud modeling, numerical models have relied on an Eulerian approach for all cloud and thermodynamic and microphysics variables. Over time the sophistication of microphysics schemes has steadily increased, from simple representations of bulk masses of cloud and rain in each grid cell, to including different ice particle types and bulk hydrometeor concentrations, to complex schemes referred to as bin or spectral schemes that explicitly evolve the hydrometeor size distributions within each model grid cell. As computational resources grow, there is a clear trend toward wider use of bin schemes, including their use as benchmarks to develop and test simplified bulk schemes. We argue that continuing on this path brings fundamental challenges difficult to overcome. The Lagrangian particle-based probabilistic approach is a practical alternative in which the myriad of cloud and precipitation particles present in a natural cloud is represented by a judiciously selected ensemble of point particles called superdroplets or superparticles. The advantages of the Lagrangian particle-based approach when compared to the Eulerian bin methodology are explained, and the prospects of applying the method to more comprehensive cloud simulations-for instance, targeting deep convection or frontal cloud systems-are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tb19zp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:21:21.988725

Metadata language

eng; USA