Identification

Title

Understanding the factors controlling MJO prediction skill across events

Abstract

The prediction skill for individual Madden–Julian oscillation (MJO) events is highly variable, but the key factors behind this remain unclear. Using the latest hindcast results from the subseasonal-to-seasonal (S2S) phase II models, this study attempts to understand the diverse prediction skill for the MJO events with an enhanced convective anomaly over the eastern Indian Ocean (IO) at the forecast start date, by investigating the preference of the prediction skill to the MJO-associated convective anomalies and low-frequency background states (LFBS). Compared to the low-skill MJO events, the high-skill events are characterized by a stronger intraseasonal convection–circulation couplet over the IO before the forecast start date, which could result in a longer zonal propagation range during the forecast period, thereby leading to a higher score for assessing the prediction skill. The difference in intraseasonal fields can further be attributed to the LFBS of IO sea surface temperature (SST) and quasi-biannual oscillation (QBO), with the high-skill (low-skill) events corresponding to a warmer (colder) IO and easterly (westerly) QBO phase. The physical link is that a warm IO could increase the low-level convective instability and thus amplify MJO convection over the IO, whereas an easterly QBO phase could weaken the Maritime Continent barrier effect by weakening the static stability near the tropopause, thus favoring eastward propagation of the MJO. It is also found that the combined effects of IO SST and QBO phases are more effective in influencing MJO prediction skill than individual LFBS.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7rb78xg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:09.379414

Metadata language

eng; USA