Identification

Title

Characterization of water-soluble brown carbon chromophores from wildfire plumes in the western USA using size-exclusion chromatography

Abstract

Wildfires are an important source of carbonaceous aerosol in the atmosphere. Organic aerosol that absorbs light in the ultraviolet to visible spectral range is referred to as brown carbon (BrC), and its impact on Earth's radiative budget has not been well characterized. We collected water-soluble brown carbon using a particle-into-liquid sampler (PILS) on board a Twin Otter aircraft during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. Samples were collected downwind of wildfires in the western United States from August to September 2019. We applied size-exclusion chromatography (SEC) with ultraviolet-visible spectroscopy to characterize the molecular size distribution of BrC chromophores. The wildfire plumes had transport ages of 0 to 5 h, and the absorption was dominated by chromophores with molecular weights < 500 Da. With BrC normalized to a conserved biomass burning tracer, carbon monoxide, a consistent decrease in BrC absorption with plume age was not observed during FIREX-AQ. These findings are consistent with the variable trends in BrC absorption with plume age reported in recent studies. While BrC absorption trends were broadly consistent between the offline SEC analysis and the online PILS measurements, the absolute values of absorption and their spectral dependence differed. We investigate plausible explanations for the discrepancies observed between the online and offline analyses. This included solvent effects, pH, and sample storage. We suspect that sample storage impacted the absorption intensity of the offline measurements without impacting the molecular weight distribution of BrC chromophores.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7377d8p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-12-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:05:49.726714

Metadata language

eng; USA