Identification

Title

Machine learning the warm rain process

Abstract

Clouds are critical for weather and climate prediction. The multiple scales of cloud processes make simulation difficult. Often models and measurements are used to develop empirical relationships for large-scale models to be computationally efficient. Machine learning provides another potential tool to improve our empirical parameterizations of clouds. To explore these opportunities, we replace the warm rain formation process in a General Circulation Model (GCM) with a detailed treatment from a bin microphysical model that causes a 400% slowdown in the GCM. We analyze the changes in climate that result from the use of the bin microphysical calculation and find improvements in the rain onset and frequency of light rain compared to high resolution process models and observations. We also find a resulting change in the cloud feedback response of the model to warming, which will significantly impact the climate sensitivity. We then replace the bin microphysical model with several neural networks designed to emulate the autoconversion and accretion rates produced by the bin microphysical model. The neural networks are organized into two stages: the first stage identifies where tendencies will be nonzero (and the sign of the tendency), and the second stage predicts the magnitude of the autoconversion and accretion rates. We describe the risks of overfitting, extrapolation, and linearization by using perfect model experiments with and without the emulator. We can recover the solutions with the emulators in almost all respects, and get simulations that perform as the detailed model, but with the computational cost of the control simulation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wh2tbj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:02.556617

Metadata language

eng; USA