Identification

Title

Application of postprocessing to watershed-scale subseasonal climate forecasts over the contiguous United States

Abstract

Subseasonal to seasonal (S2S) climate forecasting has become a central component of climate services aimed at improving water management. In some cases, operational S2S climate predictions are translated into inputs for follow-on analyses or models, whereas the S2S predictions on their own may provide for qualitative situational awareness. At the spatial scales of water management, however, S2S climate forecasts often suffer from systematic biases, and low skill and reliability. This study assesses the potential to improve S2S forecast skill and salience for watershed applications through the use of postprocessing to harness skills in large-scale fields from the global climate model forecast outputs. To this end, the components-based technique-partial least squares regression (PLSR)-is used to improve the skill of biweekly temperature and precipitation forecasts from the Climate Forecast System version 2 (CFSv2). The PLSR method forms predictor components based on a cross-validated analysis of hindcasts from CFSv2 climate and land surface fields, and the results are benchmarked against raw CFSv2 forecasts, remapped to intermediate-scale watershed areas. We find that postprocessing affords marginal to moderate gains in skill in many watersheds, raising climate forecast skill above a usability threshold over the four seasons analyzed. In other locations, however, postprocessing fails to improve skill, particularly for extreme events, and can lead to unreliably narrow forecast ranges. This work presents evidence that the statistical postprocessing of climate forecast system outputs has potential to improve forecast skill, but that more thorough study of alternative approaches and predictors may be needed to achieve comprehensively positive outcomes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7p55rqg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:19:37.992685

Metadata language

eng; USA