Identification

Title

Conservative split-explicit time integration methods for the compressible nonhydrostatic equations

Abstract

Historically, time-split schemes for numerically integrating the nonhydrostatic compressible equations of motion have not formally conserved mass and other first-order flux quantities. In this paper, split-explicit integration techniques are developed that numerically conserve these properties by integrating prognostic equations for conserved quantities represented in flux form. These procedures are presented for both terrain-following height and hydrostatic pressure (mass) vertical coordinates, two potentially attractive frameworks for which the equation sets and integration techniques differ significantly. For each set of equations, the linear dispersion equation for acoustic/gravity waves is derived and analyzed to determine which terms must be solved in the small (acoustic) time steps and how these terms are represented in the time integration to achieve stability. Efficient techniques for including numerical filters for acoustic and external modes are also presented. Simulations for several idealized test cases in both the height and mass coordinates are presented to demonstrate that these integration techniques appear robust over a wide range of scales, from subcloud to synoptic.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7x34xp6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:01:09.331850

Metadata language

eng; USA