Identification

Title

Impact of tropical cyclone wind forcing on the global climate in a fully coupled climate model

Abstract

Tropical cyclones (TCs) alter upper-ocean temperature and influence ocean heat content via enhanced turbulent mixing. A better understanding of the role of TCs within the climate system requires a fully coupled modeling framework, where TC-induced ocean responses feed back to the atmosphere and subsequently to the climate mean state and variability. Here, we investigate the impacts of TC wind forcing on the global ocean and the associated feedbacks within the climate system using the fully coupled Community Earth System Model version 1.3 (CESM1.3). Using the low-resolution version of CESM1.3 (1° atmosphere and ocean grid spacing) with no intrinsic TCs, we conduct a suite of sensitivity experiments by inserting TC winds extracted from a high-resolution (0.25° atmosphere grid spacing) TC-permitting simulation into the low-resolution model. Results from the low-resolution TC experiment are compared to a low-resolution control simulation to diagnose TCs’ impact. We found that the added TC winds can increase ocean heat content by affecting ocean vertical mixing, air–sea enthalpy fluxes, and cloud amount. The added TCs can influence mean SST, precipitation, ocean subsurface temperature, and ocean mixed layer depth. We found a strengthening of the wind-driven subtropical cells and a weakening of the Atlantic meridional overturning circulation due to the changes of surface buoyancy fluxes. TCs in the model cause anomalous equatorward ocean heat convergence in the deep tropics and an increase of poleward ocean heat transport out of the subtropics. Our modeling results provide new insights into the multiscale interactions between TCs and the coupled climate system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sn0dtj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:38.099451

Metadata language

eng; USA