Identification

Title

Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model

Abstract

n this work, the magnetic variations simulated by the NCAR thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) in the vicinity of the magnetic equator are examined to evaluate the ability of this model to reproduce the major features of the equatorial electrojet (EEJ) as observed on the ground as well as on board low-altitude orbiting satellites. The TIE-GCM simulates electric currents of various origins and reproduces their associated magnetic perturbations. We analyze the diurnal and latitudinal variations of the EEJ magnetic effects calculated on the ground in West Africa under approximately the same solar activity condition as in 1993 for the March equinox and June and December solstices. The latitudinal and local time structures of these simulated results correspond well to those that are observed. We also compare longitudinal variations of the midday EEJ magnetic perturbations observed by the CHAMP satellite with the model predictions. Although the simulations and observations both show multiple maxima and minima in longitude, the locations of these extrema often disagree. In the model most of the longitudinal variation of the magnetic variations is associated with nondipolar structure of the geomagnetic field. We find that the modeled contributions of the thermospheric migrating diurnal and semidiurnal tides to the magnetic perturbations have large longitudinal variations, and we suggest that an increase in the amplitude of these tides in the TIE-GCM may cause them to play a major role in explaining the morphology of the EEJ longitudinal variation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7t72hqc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-09-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:01:34.884498

Metadata language

eng; USA