Identification

Title

How do regional distributions of daily precipitation change under warming?

Abstract

Global warming is changing the intensity distribution of daily precipitation, with an increased frequency of heavy precipitation and reduced frequency of light/moderate precipitation in general circulation model (GCM) projections. Projected future CMIP5 GCM changes in regional daily precipitation distribution can be described by a combination of two idealized modes: a frequency decrease mode, representing a reduction in the frequency of precipitation at all rain rates; and a frequency shift mode, where the distribution shifts toward heavier rain rates. A decrease in daily precipitation frequency and an increase in intensity are projected in most regions, but the magnitude of change shows large regional variations. The two modes generally capture the projected shift from light/moderate to heavy rain rates but do not recreate GCM changes at the very highest and lowest rain rates. We propose a simple framework for deep convective precipitation change based on the dry static energy (DSE) budget, which provides a physical explanation of these idealized modes in regions and seasons where deep convection dominates precipitation. One possibility is that a frequency decrease mode is driven by increased convective inhibition (CIN). In this DSE framework, increased moisture under warming could influence the shape of the precipitation intensity distribution, particularly at the highest rain rates, but does not govern the overall magnitude of the shift to heavier rain rates, which is not well described by the Clausius-Clapeyron relationship. Changes in daily regional precipitation are not free to respond only to local changes (in e.g., moisture) but are also constrained by the DSE budget, particularly by DSE transport associated with the large-scale circulation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ns0zn2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:13.156664

Metadata language

eng; USA