Regional modeling of carbonaceous aerosols over Europe--focus on secondary organic aerosols
In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 mu g m (-aEuro parts per thousand 3) in the Northern Europe to 4 mu g m (-aEuro parts per thousand 3) over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes.
document
http://n2t.net/ark:/85065/d7hh6kr4
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-11-01T00:00:00Z
Copyright 2009, Springer Science+Business Media B.V.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:38:21.743434