Identification

Title

Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction

Abstract

In the face of escalating instances of inland and flash flooding spurred by intense rainfall and hurricanes, the accurate prediction of rapid streamflow variations has become imperative. Traditional data assimilation methods face challenges during extreme rainfall events due to numerous sources of error, including structural and parametric model uncertainties, forcing biases, and noisy observations. This study introduces a cutting-edge hybrid ensemble and optimal interpolation data assimilation scheme tailored to precisely and efficiently estimate streamflow during such critical events. Our hybrid scheme uses an ensemble-based framework, integrating the flow-dependent background streamflow covariance with a climatological error covariance derived from historical model simulations. The dynamic interplay (weight) between the static background covariance and the evolving ensemble is adaptively computed both spatially and temporally. By coupling the National Water Model (NWM) configuration of the WRF-Hydro modeling system with the Data Assimilation Research Testbed (DART), we evaluate the performance of our hybrid prediction system using two impactful case studies: (1) West Virginia's flash flooding event in June 2016 and (2) Florida's inland flooding during Hurricane Ian in September 2022. Our findings reveal that the hybrid scheme substantially outperforms its ensemble counterpart, delivering enhanced streamflow estimates for both low and high flow scenarios, with an improvement of up to 50 %. This heightened accuracy is attributed to the climatological background covariance, mitigating bias and augmenting ensemble variability. The adaptive nature of the hybrid algorithm ensures reliability, even with a very small time-varying ensemble. Moreover, this innovative hybrid data assimilation system propels streamflow forecasts up to 18 h in advance of flood peaks, marking a substantial advancement in flood prediction capabilities.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7p273cv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:18.804019

Metadata language

eng; USA