Identification

Title

A framework for detection and attribution of regional precipitation change: Application to the United States historical record

Abstract

Despite the emerging influence of anthropogenic climate change on the global water cycle, at regional scales the combination of observational uncertainty, large internal variability, and modeling uncertainty undermine robust statements regarding the human influence on precipitation. Here, we use output from global climate models in a perfect-data sense to develop a framework for conducting regional detection and attribution (D&A) for precipitation, starting with the contiguous United States (CONUS) where observational uncertainty is lower than in other regions. Our unified approach can simultaneously detect systematic trends in mean and extreme precipitation, attribute trends to anthropogenic forcings, compute the effects of forcings as a function of time, and map the effects of individual forcings. Model output is used to conduct a set of tests that yield a parsimonious representation for characterizing seasonal precipitation over the CONUS for the historical record (1900 to present day), which ensures our D&A is insensitive to structural uncertainty. Our framework is developed using synthetic data in a Pearl-causal perspective wherein causality can be identified using intervention-based simulations. While the hypothesis-based framework and accompanying generalized D&A formula we develop should be widely applicable, we include a strong caution that the hypothesis-guided simplification of the formula for the historical climatic record of CONUS as described in this paper will likely fail to hold in other geographic regions and under future warming.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7f193m7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-06T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:42.349074

Metadata language

eng; USA