Identification

Title

Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe

Abstract

In this work we present downscaling experiments with the Weather Research and Forecasting model (WRF) to test the sensitivity to resolving aerosol-radiation and aerosol-cloud interactions on simulated regional climate for the EURO-CORDEX domain. The sensitivities mainly focus on the aerosol-radiation interactions (direct and semi-direct effects) with four different aerosol optical depth datasets (Tegen, MAC-v1, MACC, GOCART) being used and changes to the aerosol absorptivity (single scattering albedo) being examined. Moreover, part of the sensitivities also investigates aerosol-cloud interactions (indirect effect). Simulations have a resolution of 0.44 degrees and are forced by the ERA-Interim reanalysis. A basic evaluation is performed in the context of seasonal-mean comparisons to ground-based (E-OBS) and satellite-based (CM SAF SARAH, CLARA) benchmark observational datasets. The impact of aerosols is calculated by comparing it against a simulation that has no aerosol effects. The implementation of aerosol-radiation interactions reduces the direct component of the incoming surface solar radiation by 20 %-30 % in all seasons, due to enhanced aerosol scattering and absorption. Moreover the aerosol-radiation interactions increase the diffuse component of surface solar radiation in both summer (30 %-40 %) and winter (5 %-8 %), whereas the overall downward solar radiation at the surface is attenuated by 3 %-8 %. The resulting aerosol radiative effect is negative and is comprised of the net effect from the combination of the highly negative direct aerosol effect (-17 to -5 W m(-2)) and the small positive changes in the cloud radiative effect (+5 W m(-2)), attributed to the semi-direct effect. The aerosol radiative effect is also stronger in summer (-12 W m(-2)) than in winter (-2 W m(-2)). We also show that modelling aerosol-radiation and aerosol-cloud interactions can lead to small changes in cloudiness, mainly regarding low-level clouds, and circulation anomalies in the lower and mid-troposphere, which in some cases, mainly close to the Black Sea in autumn, can be of statistical significance. Precipitation is not affected in a consistent pattern throughout the year by the aerosol implementation, and changes do not exceed +/- 5 % except for the case of unrealistically absorbing aerosol. Temperature, on the other hand, systematically decreases by -0.1 to -0.5 degrees C due to aerosol-radiation interactions with regional changes that can be up to -1.5 degrees C.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75b05p5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:35:31.073798

Metadata language

eng; USA