A comparison of vertical atmospheric wind profiles obtained from monostatic sodar and unmanned aerial vehicle–based acoustic tomography
The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense the virtual temperature and wind profiles of the atmosphere in a horizontal plane up to an altitude of 1200 m and over a baseline of 600 m. Sound fields recorded on board the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into two-dimensional profiles of virtual temperature and wind vector, which enables the atmosphere to be visualized and monitored over time. The wind vector and temperature estimates are compared to measurements taken by a collocated midrange Doppler sodar and sensors on board the aircraft. Large-eddy simulations of daytime atmospheric boundary layers and error models of the tomographic inversion and sodar are also used to assess the magnitude and nature of anticipated differences. Both the simulations and field trials data show similar levels of correspondence between the tomographically derived and independently observed measurements.
document
http://n2t.net/ark:/85065/d7gm89xj
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-10-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:22:52.805322