Identification

Title

A nonlinear perspective on the dynamics of the MJO: Idealized large-eddy simulations

Abstract

The 30-60-day intraseasonal atmospheric oscillation in the equatorial atmosphere, the Madden-Julian oscillation (MJO), is most visible in its signature of outgoing longwave radiation and associated convective centers. Diabatic processes related to tropical convection and two-way atmosphere-ocean interaction are hence generally believed to be crucial in explaining the origin of the MJO phenomenon. However, reliable deterministic forecasting of the MJO in global circulation models and understanding its mechanism remains unsatisfactory. Here a different approach is taken, where the hypothesis is tested that eastward-propagating MJO-like structures originate fundamentally as a result of nonlinear (dry) Rossby wave dynamics. A laboratory-scale numerical model is constructed, where the generation of solitary structures is excited and maintained via zonally propagating meanders of the meridional boundaries of a zonally periodic β plane. The large-eddy simulations capture details of the formation of solitary structures and of their impact on the convective organization. The horizontal structure and the propagation of anomalous streamfunction patterns, a diagnostic typically used in tracing the equatorial MJO, are similar to archetype solutions of the Korteweg-deVries equation, which extends the linear shallow water theory—commonly used to explain equatorial wave motions—to a weakly nonlinear regime for small Rossby numbers. Furthermore, the characteristics of the three-dimensional laboratory-scale numerical results compare well with observed features of the equatorial MJO and thus the study provides indirect evidence of the basic principles underlying the wave-driven eastward propagation of the MJO.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7057gbs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:51:19.414570

Metadata language

eng; USA