Identification

Title

Interaction of gravity waves with the QBO: A satellite perspective

Abstract

One of the most important dynamical processes in the tropical stratosphere is the quasi-biennial oscillation (QBO) of the zonal wind. Still, the QBO is not well represented in weather and climate models. To improve the representation of the QBO in the models, a better understanding of the driving of the QBO by atmospheric waves is required. In particular, the contribution of gravity waves is highly uncertain because of the small horizontal scales involved, and there is still no direct estimation based on global observations. We derive gravity wave momentum fluxes from temperature observations of the satellite instruments HIRDLS and SABER. Momentum flux spectra observed show that particularly gravity waves with intrinsic phase speeds <30m/s (vertical wavelengths <10km) interact with the QBO. Gravity wave drag is estimated from vertical gradients of observed momentum fluxes and compared to the missing drag in the tropical momentum budget of ERA-Interim. We find reasonably good agreement between their variations with time and in their approximate magnitudes. Absolute values of observed and ERA-Interim missing drag are about equal during QBO eastward wind shear. During westward wind shear, however, observations are about 2 times lower than ERA-Interim missing drag. This could hint at uncertainties in the advection terms in ERA-Interim. The strong intermittency of gravity waves we find in the tropics might play an important role for the formation of the QBO and may have important implications for the parameterization of gravity waves in global models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75x29vp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-03-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:22.407418

Metadata language

eng; USA