Assessing the impact of enhanced hydrological processes on urban hydrometeorology with application to two cities in contrasting climates
To enhance the capability of models in better characterizing the urban water cycle, physical parameterizations of urban hydrological processes have been implemented into the single-layer urban canopy model in the widely used Weather Research and Forecasting (WRF) Model. While the new model has been evaluated offline against field measurements at various cities, its performance in online settings via coupling to atmospheric dynamics requires further examination. In this study, the impact of urban hydrological processes on regional hydrometeorology of the fully integrated WRF–urban modeling system for two major cities in the United States, namely, Phoenix and Houston, is assessed. Results show that including hydrological processes improves prediction of the 2-m dewpoint temperature, an indicative measure of coupled thermal and hydrological processes. The implementation of green roof systems as an urban mitigation strategy is then tested at the annual scale. The reduction of environmental temperature and increase of humidity by green roofs indicate strong diurnal and seasonal variations and are significantly affected by geographical and climatic conditions. Comparison with offline studies reveals that land–atmosphere interactions play a crucial role in determining the effect of green roofs.
document
http://n2t.net/ark:/85065/d7x92cwk
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-04-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:01:53.254913